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ABSTRACT

Since the first days of the ISON project, its success was
strongly  based on  using  advanced  data  analysis  tech-
niques and their implementation in software. Space de-
bris studies and space surveillance in optical  are very
unique from the point of view of observation techniques
and thus infer extremely specific requirements on sensor
design and control and on initial data analysis, dictated
mostly by fast apparent motion of space objects being
studied. From the point of view of data acquisition and
analysis software, this implies support for sophisticated
scheduling,  complex  tracking,  accurate  timing,  large
fields  of  view,  and  undersampled  CCD  images  with
trailed sources.  Here we present the historical  outline,
major goals and design concepts of the standard ISON
data  acquisition and analysis  packages,  and  how they
meet  these  requirements.  Among  these  packages,  the
most important  are:  CHAOS telescope control  system
(TCS),  its  recent  successor  FORTE,  and  Apex II ‒ a
platform for astronomical image analysis with focus on
high-precision astrometry and photometry of fast-mov-
ing objects and transient  phenomena. Development of
these packages is supported by ISON, and they are now
responsible for most of the raw data produced by the
network. They are installed on nearly all sensors and are
available to all participants of the ISON collaboration.

1 INTRODUCTION

The  International  Scientific  Optical  Network  (ISON)
project [1] dates back to early 2000s when the first trial
satellite observations where performed in several Rus-
sian  astronomical  observatories,  independently  of  the
former Soviet Union space surveillance system and us-
ing  the  existing  telescopes,  charge-coupled  device
(CCD) cameras, and custom-made software. At the end
of 2004, Pulkovo Cooperation of Optical Observers was
established as a mostly self-supporting volunteer project
joining together professional and amateur  astronomers
and engineers,  mainly from the post-Soviet  space  and
those  having  long-standing  contacts  with  Russian  as-
tronomers, in order to create an all-purpose independent
coordinated worldwide network of optical facilities suit-
able for various tasks  of observational  astronomy that
may benefit from using a large number of small-aperture
but  fast-response  telescopes  with  large  fields  of  view
(FOV).

At  that  time,  a  software  suite  for  observatory  control
and  image acquisition has  been developed already by
the author at Pulkovo observatory and used for several

years, mainly for near-Earth asteroid (NEA) follow-up
[2]. This software appeared to be sufficiently versatile to
suite the needs of  the new project.

In  2004,  the  author  also  began  creating  a  new  gen-
eral-purpose software platform for astronomical image
analysis, Apex II [3,4]. The first application of the plat-
form was in the field of NEA research as well. In 2005,
a first  version of the Apex-based package for  satellite
and space debris image analysis  has been issued. Over
the years, the package became the primary tool for ini-
tial analysis of different types of observations done by
the ISON network and also acquired numerous features
specifically targeted at space surveillance and tracking
(SST).

Fig. 1 contains a very basic outline of the normal ISON
data flow shown from the “low-level” point of view of
the optical sensor. From this perspective, the data analy-
sis center located at Keldysh Institute for Applied Math-
ematics (KIAM) in Moscow is a source of the latest or-
bital  catalog and a schedule,  for each sensor indepen-
dently. The main and only output of the sensor is a set of
tracklets of all orbital objects detected in the images ac-
quired according to the schedule; these are sent back to
the KIAM center which is responsible for their correla-
tion, and which maintains the catalog and schedules ob-
servations  for all  sensors according  to  the  latest  data.
Details of the latter process are completely out of the
scope of the present report where we concentrate only
on the flow of data within an individual sensor.

Sensor data flow starts from the telescope control sys-
tem (TCS) which is a collection of software components
that can be thought as a means to convert the schedule
to a set of images ‒ pixel arrays accompanied by meta-
data (information on the image environment necessary
for data reduction and analysis). TCS operates the vari-
ous observatory hardware and coordinates its individual
components to work together for optimally solving the

Figure 1. Basic ISON data flow



requested  observation  task.  The  second  major  sensor
software  component  is  an  image analysis  system that
converts  stacks  of  images  into  the  ultimate  sensor
“product” ‒  a  set  of  individual  detections’ parameters
assembled into tracklets.  Here we focus on these  two
software components.

2 IMAGE ANALYSIS PIPELINE

Most  of  the  ISON image  analysis  pipelines ‒  and  all
pipelines  targeted  at  SST ‒ are  built  on  top  of  the
Apex II platform. The following describes the main de-
sign drivers  and  features  of  Apex II  specific  to  space
surveillance.

2.1 APEX II: Motivation and Design

Apex II image analysis system was initially an answer
to the demand for a highly automated and accurate soft-
ware for astrometric reduction of large amount of obser-
vations in the near-Earth asteroid (NEA) follow-up pro-
gram conducted at Pulkovo [2]. However, the main de-
sign concept when starting development in 2004 was to
create  a  flexible  multi-purpose  open-source  software
platform aimed at  being suitable  (at least,  potentially)
for any kind of data analysis in astronomy, with particu-
lar focus on optical and infrared imaging and on astro-
metric accuracy. The latter requirement was rarely met
then  in  the  widely  used  general-purpose  astronomical
image analysis software like IRAF, MIDAS, or IDL; the
full range of algorithms for accurate differential astrom-
etry,  including  precise  measurement  of  centroid  posi-
tions and means to correct instrumental and atmospheric
distortions, was implemented only in the highly special-
ized software for several astrometric projects. The pack-
ages mentioned  above,  as  well  as  several  others,  had
also a long history of development and thus were based
on the software design concepts that were often depre-
cated and inconvenient for modification and adaptation
to non-standard purposes; some of them were commer-
cial and closed-source, which limited their use.

Apex II pretended to fill this gap and still remain a mod-
ern highly versatile data analysis tool not limited to clas-
sical astrometry and NEA studies. To achieve this, we
have  chosen  to  create  a  package  based  on  the  open-
source tools such as the Python programming language
(www.python.org) and its extensive collection of pack-
ages  for  scientific  computing  that  served  as  building
blocks for a large library of astronomical image analysis
algorithms and applications. Over the recent years, this
platform  acquired  a  constantly  growing  recognition
throughout  the  scientific  community.  Fig. 2 illustrates
how these ideas were implemented in Apex II; details on
the  particular  software  components  are  provided  in
[2,3].

Using Apex II in the ISON framework is a major chal-
lenge to its capabilities. A very special mode of observa-
tions dictated by the fast apparent motion of objects un-
der study with respect to field stars infers very specific
requirements on the image analysis software that should

be able to deal with highly extended (trailed) images of
field stars and/or Earth-orbiting objects. One more set of
peculiarities  comes from using  mostly wide-FOV and
hence extremely fast,  down to  f /1, optical systems in
SST, which leads to the numerous negative effects of
optical  distortions  and  undersampling.  Moreover,  the
highly heterogeneous nature of ISON that includes sen-
sors of very different apertures and other optical charac-
teristics and that are installed at places with very differ-
ent sky conditions that are often far from perfect implies
that the software should be extremely flexible and cus-
tomizable  and  contain  the  appropriate  algorithms  for
any possible case. Finally, the software should be able to
process high amounts of data in short time and should
ensure  maximum reliability  of  space  object  detection
with a minimum loss of sensitivity compared with the
human eye.

To meet these requirements, Apex II, since the issuance
of the first version of the satellite pipeline in 2005, ac-
quired algorithms for robust non-stellar object detection
based  on  mathematical  morphology,  substantially  in-
creased  its  performance  by  extensively  using  parallel
computing, incorporated advanced initial orbit determi-
nation (IOD) and tracklet linking methods, and thus fi-
nally became a tool that produces most of the millions
of  ISON measurements  of  space  object  positions  and
fluxes per year. Its core and library are open-source and
available  from the  author  on  a  request;  however,  the
SST package and all relevant algorithms are currently
distributed only among the ISON members and cannot
be disclosed elsewhere.

2.2 APEX II: Key Features for Space Surveil-
lance

As it was noted above, using Apex II in SST seriously
challenges its  capabilities.  First  of  all,  a  demand  for
real-time data analysis for any data rate leads to an ab-
solute  necessity  of  parallel  computing.  Fortunately,
many image analysis algorithms are naturally paralleliz-
able. Then, for all but the shortest exposure times, the
shapes of images of Earth-orbiting objects and those of
field stars  are clearly distinct, which leads to a natural

Figure  2.  Structure  of  the  Apex  II  image  processing
system
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application  of  mathematical  morphology  methods  for
object detection. The point-spread function (PSF) fitting
technique inherent to the normal Apex II data flow using
an efficient parallel implementation is a major source of
the final accuracy of positional measurements. Finally,
an effective kd-tree based algorithm for linking separate
candidate  detections  into  tracklets,  similar  to  the  one
used by the PanSTARRS team [5], helps to quickly cor-
relate multiple frames in a cadence and exclude false de-
tections.

2.3 Parallel Computing

The first implementation of the Apex II parallel subsys-
tem was based on the built-in Python multiprocessing
capability which allowed to split calculations into multi-
ple  central  processing  unit  (CPU)  cores  of  the  local
workstation.  This  approach  is  simple  and  straightfor-
ward, and it allows also to run the pipeline on a super-
computer that has the capability to distribute local pro-
cesses across multiple nodes for maximum scalability.
The implementation is two-level: on the lower level, it
splits the data flow for a single image into several sub-
flows (e. g. parallel filtering of several parts of the pixel
array or parallel PSF fitting for all detections); on the
upper  level,  several  images  are  processed  in  parallel.
Since  not  all  parts  of  the  single-image  pipeline  are
equally  parallelizable,  this  combined  approach  allows
for  the  maximum possible  utilization  of  all  available
CPU cores when processing large datasets.

Apart  from that,  a  newer  implementation  is  currently
under  development  in  collaboration  with  the  TFRM
team  at  University  of  Barcelona.  It  is  based  on  the
OpenCL technology  (www.khronos.org/opencl)  which
allows to run certain algorithms both on multiple CPU
cores  and  on  the  general-purpose  graphics  processing
unit  (GPGPU)  hardware  [6].  Pixel  processing  is  the
most  natural  application  for  GPGPU  programming;
however, as it is noted in [6], a number of less-evident
applications  like  e. g.  optimization  may  also  benefit
from it. Combined with the older multiprocessing-based
approach  applied  at  the  level  of  parallel  reduction  of
multiple  images,  the  OpenCL-based  backend  is  ex-
pected to  further  increase  the  performance of  Apex II
SST pipelines and open the way for advanced uses like
detection of faint space debris beyond the normal sensi-
tivity limit of the sensor by means of shift-stacking se-
ries of images in all directions [7].

2.4 Mathematical Morphology

Traditional approaches to detection of fast-moving ob-
jects in stacks of CCD images usually rely on either tak-
ing difference images  to  eliminate  everything that  re-
tains its position and brightness in adjacent images (i. e.
field stars and other deep-sky objects) or comparing po-
sitions of all detections in the images to identify objects
moving according to the linear pattern. However, using
the  first  method  in  ground-based  observations  is
strongly  limited  by  atmospheric  seeing  that  affects

brightness and shape of stellar images and makes them
look  slightly  different  even  in  images  taken  close  in
time, thus leading to numerous artifacts left by subtrac-
tion.  This  method  is  also  absolutely  infeasible  when
dealing with images acquired  in  non-sidereal  tracking
mode (i. e. for almost any practical type of space debris
observations), as trailed stellar images do not  preserve
their pixel positions and therefore are not eliminated by
subtraction.

The second group of methods relies on analyzing mea-
sured pixel or sky positions of all detections in multiple
images and is hence less sensitive to atmospheric noise,
since a cutoff  may be inferred on the jitter  of coordi-
nates across images to avoid false movers.  The draw-
back of this approach, however, is the need to first accu-
rately measure positions of all detections in all images,
down to the sensitivity limit, which may become very
time-consuming.

Our approach that is implemented in the ISON image
analysis pipeline, first described in [3], overcomes this
difficulty  by  using  binary  morphological  filtering  to
eliminate star streaks before detection and thus consid-
erably reducing the amount of work to measure and ana-
lyze positions. The basic idea behind this method is that
the  shapes  of  star  streaks  are  fully  defined  by  pixel
scale, exposure duration, seeing, and tracking rate, and
are  thus  quite  accurately  known  beforehand  and  are
clearly distinct from the shapes of space debris images.
Then, using methods of mathematical morphology and a
properly constructed filter kernel, one can detect image
features corresponding to star streaks and finally elimi-
nate them.

A somewhat similar approach is presented in [8]. Unlike
our technique that is based on binary morphology, the it-
erative  matched filter  described  there  does  effectively
the same but acting on grayscale images  to  gradually
wipe out star streaks. This should have an advantage of
potentially  higher  sensitivity  and  the  ability  to  detect
space  debris  overlapping  with  star  streaks,  at  the  ex-
pense of computation time and a certain loss of reliabili-
ty due to amplification of point-like artifacts like cosmic
ray hits, hot pixels, and noise peaks. However, we have
not done a direct comparison of both methods yet and
cannot  definitely  conclude  on  their  relative  perfor-
mance.

Candidate space debris positions that are generated by
the Apex II  morphology-based moving object  detector
are then passed to the  kd-tree based tracklet linking al-
gorithm mentioned in Section 2.2 that also identifies and
removes the remaining spurious detections. Final track-
lets  are  validated  against  IOD  and  sent  back  to  the
KIAM data analysis center, as shown in Fig. 1.

3 TELESCOPE CONTROL SYSTEM

Here we describe the design ad implementation of the
second principal ISON sensor software component that
is responsible for acquiring the imaging data.

http://www.khronos.org/opencl


3.1 TCS Software Requirements

Each of the thousands of small and large robotic tele-
scopes in the world is controlled by its TCS software,
the only ultimate goal of which being to obtain scientific
data in whatever form it is possible for the given instru-
ment.  Even  if  we  limit  ourselves  to  optical  imaging,
there are numerous programs, open-source, proprietary,
and custom-made (the latter, most often, on large tele-
scopes), that are responsible for pointing and tracking,
image acquisition, as well as for planning observations
and controlling the various auxiliary observatory equip-
ment. Among them, at least two ‒ RTS2 (www.rts2.org)
and INDI (indilib.org) ‒ are open-source, support a wide
range of the commonly-used astronomical instrumenta-
tion, and are adopted by many teams for “classical” as-
tronomical  applications  involving  deep-sky  and  slow-
moving Solar system objects.

However,  SST poses  a  number  of  important  require-
ments that are rarely or never needed in other types of
observations. Most of them are dictated by the relative
proximity of objects to observer and thus by their fast
apparent motion. The final accuracy of positional mea-
surements is affected by timing which, depending on the
orbit, should be perfect to several tens of milliseconds
(high  orbits)  or  to  fractions  of  a  millisecond  (low
orbits). To follow an object, the system should support
fast  and variable-rate tracking, either  according to the
ephemeris  or  with  the  feedback  from real-time  posi-
tional  measurements.  As  it  was  noted  in  Section 2.1,
SST requires wide-FOV optical systems, and it is often
more cost-effective and flexible to use multiple parallel
optical  sensors  rather  than  a  single  larger-FOV  one.
Also, to provide immediate follow-up of new discover-
ies for better IOD, many SST systems (including many
ISON sites)  are equipped with several  optical  sensors
(e. g.  survey,  follow-up,  and  characterization  subsys-
tems) that work together and should be coordinated;  a
possible data flow for this case is given in Fig. 3. This
leads to the need to simultaneously control complex set-
ups with multiple sensors and to get feedback from the
image analysis pipeline in real  time. Finally,  although
not strictly required, a capability of dynamic reschedul-
ing of observations that also takes into account sky con-
ditions (incl. cloud coverage) may increase the overall
performance,  especially  for  sensors  located  at  lower-
quality astronomical sites.

Apart  from the  above  conditions  that  are  specific  to
SST, a  good astronomical  data acquisition software is
expected  to  comply  to  a  number  of  more  generic  re-
quirements.  First,  a  potentially  large  number  of  hard-
ware components in the observatory that a single control
computer  cannot  always  accommodate  demands  for
some  type  of distributed  software  architecture  that
would allow to easily reconfigure the observatory setup
to split  it  across  multiple  control  and  data processing
workstations. Then, a web-based user interface (UI) is
required to easily access the TCS, monitor its state and
progress of observations, and allow for manual interven-
tion when necessary in a uniform manner, both locally

and  remotely.  A cleverly  designed  modular  hardware
support  architecture and the corresponding application
programming  interface  (API)  are  required  for  easily
porting the TCS to any new hardware when upgrading
the sensor, while an extensive datalogging capability not
only  helps  to  track  operation  errors  but  is  useful  for
scheduling  maintenance  and  replacement  of  certain
hardware parts.

3.2 First Generation of the ISON Data Acqui-
sition Software

As it was mentioned in Section 1, by the time of estab-
lishment of the ISON collaboration in mid-2000’s, there
existed a set  of software applications and components
for  general-purpose  telescope  control,  image  acquisi-
tion,  and  other  tasks  supporting  robotic  observations.
They were developed at Pulkovo Observatory by the au-
thor  since  the  year  2000.  Their  design  was  driven
mainly by the need in modular approach and flexibility,
accurate hardware-assisted timing, and focus on the user
interface that should be convenient, look familiar to pro-
fessional astronomers, and provide easy access to most
of the common operations. The software was oriented
mainly towards the “supervised automated” mode of ob-
servations when the normal operation flow runs accord-
ing to  the schedule,  while  the detailed hardware state
and progress of operation are easily available to the ob-
server who has also the capability to manually override
the automatic operation at any time.

The software [2] consists of the following large compo-
nents. CHAOS package is an integrated TCS application
that is responsible for basic scheduling, ephemeris sup-
port,  and  controlling  the  mount  and  other  auxiliary
equipment like dome, focusers, limit switches, sensors,
etc.  The  list  of  supported  mount  controllers  include
Meade  LX-200  compatibles,  SynScan  handpad,
EQMOD-compatible controllers, Sidereal Technologies
servo controllers, ASCOM-compliant devices, and sev-
eral  other  less  widely-used  robotic  mounts.
CameraControl is  an  integrated  application  for  CCD
camera and filter wheel control and for image examina-
tion  and  storage.  Most  popular  cameras  and  filter
wheels,  including FLI,  SBIG, Apogee, and others,  are
supported. The Datalogger application provides system-
wide  logging  of  the  TCS operation.  And,  finally,  the
hardware-disciplined timing subsystem provides a com-

Figure 3. On-site follow-up
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mon API to non-realtime software events and to hard-
ware triggering capabilities. The whole package is quite
diverse  regarding  the  programming  languages  and
frameworks used (Delphi, C, Ada’95, Fortran, Python,
etc.); inter-component data exchange is mostly based on
dynamic linking using a set of binary APIs and on cus-
tom networking protocols.

This  set  of  software  components  has  been adapted to
some most important ISON network needs and currently
drives the vast majority of ISON sensors. Its advantage
is its relatively long history (almost twice as long as the
ISON’s) and hence stability; it is also flexible enough to
suite  at  least  the  most  basic  of  the  SST requirements
listed above. However, all these packages are based on a
deprecated software model, which strongly limits its ex-
tensibility potential, and it still lacks enough flexibility
for some of the most advanced recent ISON observa-
tions strategies. The major problem is a weak integra-
tion with the image analysis facility (Apex II), which se-
verely complicates the implementation of such modes as
on-site follow-up (Fig. 3) and limits several other things
like the ephemeris engine capabilities and maintaining
accurate alignment and focus.

3.3 FORTE ‒ a New TCS Software Package

To overcome the limitations described in the previous
section, we have chosen to write a new integrated TCS
and  data  acquisition  software  from scratch.  The  new
package, called FORTE (Facility for Operating Robotic
Telescope  Equipment),  is  based  on  Python  and  thus
shares the common platform with the image analysis in-
frastructure, which makes integration with Apex II very
straightforward and natural. Using such a high-level and
notoriously  slow  language  as  Python  for  controlling
hardware ‒ a task that  inevitably contains time-critical
code ‒ is of course an arguable decision. However, as it
is  the case for  Apex II,  the most time-critical  FORTE
code that directly interfaces the hardware can be imple-
mented in C and easily linked to Python level;  Python
itself,  in  turn, is  used  for  scripting  and  controlling
lower-level  blocks,  which  is  a  classical  way of  using
scripting  languages.  Writing  most  of  the  code  in  a
higher level not only saves coding time; this also allows
one to easily implement some very sophisticated algo-
rithms like automatic alignment and automatic capturing
of twilight flats, as well as to achieve a very high degree
of  configurability.  Although any decent  TCS software
has a scripting capability of a certain kind, the latter is
usually added to the existing low-level hardware control
infrastructure, which gives one the level of control far
inferior to that  achievable  by FORTE, where the very
core of the TCS is implemented in the same language
and at the same level of generality.

FORTE distributed  core is  based  on a  unique  remote
procedure call (RPC) mechanism that goes beyond such
well-known  Python  RPC  implementations  as  Pyro
(pypi.python.org/pypi/Pyro4)  and  features  transparent
remote access even to such objects as error stack traces

and  inter-process  synchronization  primitives.  This  al-
lows one to spread hardware components across the net-
work  in  a  fully  arbitrary  and  configurable  manner.
FORTE RPC uses two kinds of network transport for se-
rialization: the internal binary protocol for maximum ef-
ficiency and the human-readable extensible markup lan-
guage (XML) based protocol for maximum portability,
e. g. implementing device driver modules and client ap-
plications in languages other than Python.

FORTE is designed for maximum flexibility and scala-
bility.  Fig. 4 illustrates  the  most  generic  observatory
setup  and  its  logical  components.  One  can  see  that
FORTE is able to control as simple setup as an amateur-
grade goto mount plus CCD camera, as well as the re-
cently constructed series of multi-dome and multi-tele-
scope  ISON  sites  sponsored  by  the  ROSCOSMOS
grant, by means of just changing the text-based configu-
ration  file.  New hardware  support  modules  are  easily
added according to simple APIs. Other software compo-
nents of FORTE are shown in Fig. 5. Here we briefly
describe them and highlight some specific FORTE fea-
tures.

Forte datalogger is based on the built-in Python logging
facility; thus it also automatically handles log messages
from all external modules that use the same facility. Var-
ious backends are supported, including disk files with
optional automatic rotation, Unix syslog daemon, Win-
dows event log, and sockets. The actual logging config-
uration,  including specifying  destinations  for  different
types of events and message formats, is fully defined by

Figure 4. Observatory setup and its components

Figure 5. FORTE software components
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the user. The same facility is used to collect the various
hardware usage statistics,  including motor revolutions,
shutter cycles, voltages, and so forth.

Ephemeris engine provides the instantaneous object po-
sitions and velocities  for  pointing  and tracking.  Apart
from its own ephemeris data sources, the engine has ac-
cess to those supported by Apex II, including stellar cat-
alogs, Solar system ephemerides, and databases of orbits
of artificial  Earth satellites and space debris.  Network
interface is the common gateway for externally control-
ling  and  monitoring  FORTE operation  via  the  XML-
based RPC protocol. This is facilitated by several client
applications,  including  web-based  graphical  UI  (GUI)
and console-mode clients, and by Python scripts for au-
tomation of certain routine observation tasks.

All hardware devices, as well as the top-level Observa-
tory device (see Fig. 4), are always in one of the prede-
fined hardware states. The offline state assumes that all
devices are in safe state (e. g. telescope parked, dome
closed,  CCD thermoelectric  cooler  disabled,  etc.)  and
ready for power-off; while in offline, the link between
FORTE and hardware is not established. Devices are in
the suspend state during long delays in the normal oper-
ation  (e. g.  due  to  unfavorable  weather  conditions  or
daytime);  hardware  link  is  established,  and  FORTE
monitors the various hardware characteristics but does
not take any active control actions. In the standby state,
FORTE makes sure that devices are ready for immedi-
ately starting the normal operation but prevents any ac-
tual  movement  or  other  similar  activities.  Finally,  the
online state is the only one for normal operation, when
FORTE accepts requests for doing observations.

An important FORTE feature is the image pipeline that
is essentially a user-defined set of operations on the im-
age data and metadata. Pipelines consist of elementary
operations  like  image  calibration,  display,  or  storage,
run  sequentially,  in  parallel,  or  in  any  combinations.
They are initiated asynchronously immediately after the
image readout; metadata hold a set of TCS state parame-
ters  before,  during,  and  after  integration,  as  well  as
some  accompanying  information  like  weather  condi-
tions. A certain default pipeline is associated with each
optical  channel  of  the  observatory,  but  it  can be  also
overridden by client  applications individually for each
exposure. The most basic image pipeline consists of just
storing the image on disk as a flexible image transport
system (FITS) file; this is what most of the simple TCS
packages do. A more complex example may involve on-
the-fly image analysis of a set of images to detect track-
lets and initiate follow-up observations on another sen-
sor in case of uncorrelated detection.

Another noteworthy FORTE feature is its event system.
Various  events  are  generated  by  TCS components  on
certain state  changes.  The user  can  define  actions for
some  relevant  events  by  means  of  Python  scripting.
Some possible examples of “event ‒ action” pairs are:
the overall cloud coverage is above 90% →  switch to
standby;  relative  humidity  is  above 95% → switch  to

suspend;  ambient  temperature  has  changed  by  10º →
perform auto-focusing.  FORTE event  system makes a
large  contribution to  its  overall  flexibility  and,  in  the
right hands, may become a powerful tool for building a
very intelligent observatory.

For a long time, ISON used (and is still using) the old
Russian space surveillance system format for raw mea-
surement interchange. This format is very restrictive and
is capable of storing only a very limited set of parame-
ters, and with limited numerical precision. To avoid data
loss during the interchange and to handle a more exten-
sive set of parameters, including those related to object
characterization,  ISON is  currently  moving  to  a  new
XML-based format. Apart from being able to store data
with  precision  appropriate  to  the  actual  accuracy  of
measurements, this format may contain extended param-
eters related to color photometry, shape of the objects’
images,  and  the  various  primary  accuracy  estimates.
This may also help to evaluate the reliability and quality
of  individual  measurements.  The  new  format  that  is
fully supported by FORTE is also fully extendable. Be-
low is an example of a measurement represented in this
format:

<meas>

  <sensor>12345</sensor> <id>12001002</id>

  <filename>/.../25.20120101T001122345.fit</filename>

  <utc>2012-01-01T00:11:22.345678</utc>

  <ra_j2000>1.2345678</ra_j2000>

  <dec_j2000>-2.345678</dec_j2000>

  <ra_j2000_error>0.123</ra_j2000_error>

  <dec_j2000_error>0.234</dec_j2000_error>

  <mag>15.678</mag> <mag_error>0.05</mag_error>
  <snr>5.678</snr> <x>123.456</x> <y>789.012</y>

  <x_error>0.0234</x_error> <y_error>0.0345</y_error>

  <vel_ha>-0.123</vel_ha> <vel_dec>1.234</vel_dec>

  <length>39.7</length> <width>2.5</width> 

<rot>43</rot>

      ...

</meas>

<meas>

  ...

</meas>

4 CONCLUSIONS

We have described here the basic structure, design prin-
ciples, and implementation details of the standard tele-
scope control, data acquisition, and image analysis soft-
ware  currently  driving  almost  all  ISON sites.  Among
other factors, the resulting performance of ISON sensors
was for a long time limited by non-realtime initial data
processing and by weak integration of the image analy-
sis pipeline with TCS. During the years 2010‒2013, the
Apex II image analysis platform acquired a parallel sub-
system. Along with the use of mathematical morphology
methods for fast-moving object detection, as well as the



kd-tree based tracklet linking algorithm, this resulted in
much higher computational performance of initial data
reduction. A new observatory control system, FORTE, is
tightly  integrated  with  the  data  reduction  pipeline,
which strongly enhances its capabilities and results in a
significant improvement of space debris discovery rate
and of the overall ISON performance in general.
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