
ISON DATA ACQUISITION AND ANALYSIS SOFTWARE

Vladimir Kouprianov (1)

(1) Central (Pulkovo) Observatory of Russian Academy of Sciences,
196140, 65-1, Pulkovskoye ave., Saint Petersburg, Russia, Email: v.k@bk.ru

ABSTRACT

Since the first days of the ISON project, its success was
strongly based on using advanced data analysis tech-
niques and their implementation in software. Space de-
bris studies and space surveillance in optical are very
unique from the point of view of observation techniques
and thus infer extremely specific requirements on sensor
design and control and on initial data analysis, dictated
mostly by fast apparent motion of space objects being
studied. From the point of view of data acquisition and
analysis software, this implies support for sophisticated
scheduling, complex tracking, accurate timing, large
fields of view, and undersampled CCD images with
trailed sources. Here we present the historical outline,
major goals and design concepts of the standard ISON
data acquisition and analysis packages, and how they
meet these requirements. Among these packages, the
most important are: CHAOS telescope control system
(TCS), its recent successor FORTE, and Apex II ‒ a
platform for astronomical image analysis with focus on
high-precision astrometry and photometry of fast-mov-
ing objects and transient phenomena. Development of
these packages is supported by ISON, and they are now
responsible for most of the raw data produced by the
network. They are installed on nearly all sensors and are
available to all participants of the ISON collaboration.

1 INTRODUCTION

The International Scientific Optical Network (ISON)
project [1] dates back to early 2000s when the first trial
satellite observations where performed in several Rus-
sian astronomical observatories, independently of the
former Soviet Union space surveillance system and us-
ing the existing telescopes, charge-coupled device
(CCD) cameras, and custom-made software. At the end
of 2004, Pulkovo Cooperation of Optical Observers was
established as a mostly self-supporting volunteer project
joining together professional and amateur astronomers
and engineers, mainly from the post-Soviet space and
those having long-standing contacts with Russian as-
tronomers, in order to create an all-purpose independent
coordinated worldwide network of optical facilities suit-
able for various tasks of observational astronomy that
may benefit from using a large number of small-aperture
but fast-response telescopes with large fields of view
(FOV).

At that time, a software suite for observatory control
and image acquisition has been developed already by
the author at Pulkovo observatory and used for several

years, mainly for near-Earth asteroid (NEA) follow-up
[2]. This software appeared to be sufficiently versatile to
suite the needs of the new project.

In 2004, the author also began creating a new gen-
eral-purpose software platform for astronomical image
analysis, Apex II [3,4]. The first application of the plat-
form was in the field of NEA research as well. In 2005,
a first version of the Apex-based package for satellite
and space debris image analysis has been issued. Over
the years, the package became the primary tool for ini-
tial analysis of different types of observations done by
the ISON network and also acquired numerous features
specifically targeted at space surveillance and tracking
(SST).

Fig. 1 contains a very basic outline of the normal ISON
data flow shown from the “low-level” point of view of
the optical sensor. From this perspective, the data analy-
sis center located at Keldysh Institute for Applied Math-
ematics (KIAM) in Moscow is a source of the latest or-
bital catalog and a schedule, for each sensor indepen-
dently. The main and only output of the sensor is a set of
tracklets of all orbital objects detected in the images ac-
quired according to the schedule; these are sent back to
the KIAM center which is responsible for their correla-
tion, and which maintains the catalog and schedules ob-
servations for all sensors according to the latest data.
Details of the latter process are completely out of the
scope of the present report where we concentrate only
on the flow of data within an individual sensor.

Sensor data flow starts from the telescope control sys-
tem (TCS) which is a collection of software components
that can be thought as a means to convert the schedule
to a set of images ‒ pixel arrays accompanied by meta-
data (information on the image environment necessary
for data reduction and analysis). TCS operates the vari-
ous observatory hardware and coordinates its individual
components to work together for optimally solving the

Figure 1. Basic ISON data flow

requested observation task. The second major sensor
software component is an image analysis system that
converts stacks of images into the ultimate sensor
“product” ‒ a set of individual detections’ parameters
assembled into tracklets. Here we focus on these two
software components.

2 IMAGE ANALYSIS PIPELINE

Most of the ISON image analysis pipelines ‒ and all
pipelines targeted at SST ‒ are built on top of the
Apex II platform. The following describes the main de-
sign drivers and features of Apex II specific to space
surveillance.

2.1 APEX II: Motivation and Design

Apex II image analysis system was initially an answer
to the demand for a highly automated and accurate soft-
ware for astrometric reduction of large amount of obser-
vations in the near-Earth asteroid (NEA) follow-up pro-
gram conducted at Pulkovo [2]. However, the main de-
sign concept when starting development in 2004 was to
create a flexible multi-purpose open-source software
platform aimed at being suitable (at least, potentially)
for any kind of data analysis in astronomy, with particu-
lar focus on optical and infrared imaging and on astro-
metric accuracy. The latter requirement was rarely met
then in the widely used general-purpose astronomical
image analysis software like IRAF, MIDAS, or IDL; the
full range of algorithms for accurate differential astrom-
etry, including precise measurement of centroid posi-
tions and means to correct instrumental and atmospheric
distortions, was implemented only in the highly special-
ized software for several astrometric projects. The pack-
ages mentioned above, as well as several others, had
also a long history of development and thus were based
on the software design concepts that were often depre-
cated and inconvenient for modification and adaptation
to non-standard purposes; some of them were commer-
cial and closed-source, which limited their use.

Apex II pretended to fill this gap and still remain a mod-
ern highly versatile data analysis tool not limited to clas-
sical astrometry and NEA studies. To achieve this, we
have chosen to create a package based on the open-
source tools such as the Python programming language
(www.python.org) and its extensive collection of pack-
ages for scientific computing that served as building
blocks for a large library of astronomical image analysis
algorithms and applications. Over the recent years, this
platform acquired a constantly growing recognition
throughout the scientific community. Fig. 2 illustrates
how these ideas were implemented in Apex II; details on
the particular software components are provided in
[2,3].

Using Apex II in the ISON framework is a major chal-
lenge to its capabilities. A very special mode of observa-
tions dictated by the fast apparent motion of objects un-
der study with respect to field stars infers very specific
requirements on the image analysis software that should

be able to deal with highly extended (trailed) images of
field stars and/or Earth-orbiting objects. One more set of
peculiarities comes from using mostly wide-FOV and
hence extremely fast, down to f /1, optical systems in
SST, which leads to the numerous negative effects of
optical distortions and undersampling. Moreover, the
highly heterogeneous nature of ISON that includes sen-
sors of very different apertures and other optical charac-
teristics and that are installed at places with very differ-
ent sky conditions that are often far from perfect implies
that the software should be extremely flexible and cus-
tomizable and contain the appropriate algorithms for
any possible case. Finally, the software should be able to
process high amounts of data in short time and should
ensure maximum reliability of space object detection
with a minimum loss of sensitivity compared with the
human eye.

To meet these requirements, Apex II, since the issuance
of the first version of the satellite pipeline in 2005, ac-
quired algorithms for robust non-stellar object detection
based on mathematical morphology, substantially in-
creased its performance by extensively using parallel
computing, incorporated advanced initial orbit determi-
nation (IOD) and tracklet linking methods, and thus fi-
nally became a tool that produces most of the millions
of ISON measurements of space object positions and
fluxes per year. Its core and library are open-source and
available from the author on a request; however, the
SST package and all relevant algorithms are currently
distributed only among the ISON members and cannot
be disclosed elsewhere.

2.2 APEX II: Key Features for Space Surveil-
lance

As it was noted above, using Apex II in SST seriously
challenges its capabilities. First of all, a demand for
real-time data analysis for any data rate leads to an ab-
solute necessity of parallel computing. Fortunately,
many image analysis algorithms are naturally paralleliz-
able. Then, for all but the shortest exposure times, the
shapes of images of Earth-orbiting objects and those of
field stars are clearly distinct, which leads to a natural

Figure 2. Structure of the Apex II image processing
system

http://www.python.org/

application of mathematical morphology methods for
object detection. The point-spread function (PSF) fitting
technique inherent to the normal Apex II data flow using
an efficient parallel implementation is a major source of
the final accuracy of positional measurements. Finally,
an effective kd-tree based algorithm for linking separate
candidate detections into tracklets, similar to the one
used by the PanSTARRS team [5], helps to quickly cor-
relate multiple frames in a cadence and exclude false de-
tections.

2.3 Parallel Computing

The first implementation of the Apex II parallel subsys-
tem was based on the built-in Python multiprocessing
capability which allowed to split calculations into multi-
ple central processing unit (CPU) cores of the local
workstation. This approach is simple and straightfor-
ward, and it allows also to run the pipeline on a super-
computer that has the capability to distribute local pro-
cesses across multiple nodes for maximum scalability.
The implementation is two-level: on the lower level, it
splits the data flow for a single image into several sub-
flows (e. g. parallel filtering of several parts of the pixel
array or parallel PSF fitting for all detections); on the
upper level, several images are processed in parallel.
Since not all parts of the single-image pipeline are
equally parallelizable, this combined approach allows
for the maximum possible utilization of all available
CPU cores when processing large datasets.

Apart from that, a newer implementation is currently
under development in collaboration with the TFRM
team at University of Barcelona. It is based on the
OpenCL technology (www.khronos.org/opencl) which
allows to run certain algorithms both on multiple CPU
cores and on the general-purpose graphics processing
unit (GPGPU) hardware [6]. Pixel processing is the
most natural application for GPGPU programming;
however, as it is noted in [6], a number of less-evident
applications like e. g. optimization may also benefit
from it. Combined with the older multiprocessing-based
approach applied at the level of parallel reduction of
multiple images, the OpenCL-based backend is ex-
pected to further increase the performance of Apex II
SST pipelines and open the way for advanced uses like
detection of faint space debris beyond the normal sensi-
tivity limit of the sensor by means of shift-stacking se-
ries of images in all directions [7].

2.4 Mathematical Morphology

Traditional approaches to detection of fast-moving ob-
jects in stacks of CCD images usually rely on either tak-
ing difference images to eliminate everything that re-
tains its position and brightness in adjacent images (i. e.
field stars and other deep-sky objects) or comparing po-
sitions of all detections in the images to identify objects
moving according to the linear pattern. However, using
the first method in ground-based observations is
strongly limited by atmospheric seeing that affects

brightness and shape of stellar images and makes them
look slightly different even in images taken close in
time, thus leading to numerous artifacts left by subtrac-
tion. This method is also absolutely infeasible when
dealing with images acquired in non-sidereal tracking
mode (i. e. for almost any practical type of space debris
observations), as trailed stellar images do not preserve
their pixel positions and therefore are not eliminated by
subtraction.

The second group of methods relies on analyzing mea-
sured pixel or sky positions of all detections in multiple
images and is hence less sensitive to atmospheric noise,
since a cutoff may be inferred on the jitter of coordi-
nates across images to avoid false movers. The draw-
back of this approach, however, is the need to first accu-
rately measure positions of all detections in all images,
down to the sensitivity limit, which may become very
time-consuming.

Our approach that is implemented in the ISON image
analysis pipeline, first described in [3], overcomes this
difficulty by using binary morphological filtering to
eliminate star streaks before detection and thus consid-
erably reducing the amount of work to measure and ana-
lyze positions. The basic idea behind this method is that
the shapes of star streaks are fully defined by pixel
scale, exposure duration, seeing, and tracking rate, and
are thus quite accurately known beforehand and are
clearly distinct from the shapes of space debris images.
Then, using methods of mathematical morphology and a
properly constructed filter kernel, one can detect image
features corresponding to star streaks and finally elimi-
nate them.

A somewhat similar approach is presented in [8]. Unlike
our technique that is based on binary morphology, the it-
erative matched filter described there does effectively
the same but acting on grayscale images to gradually
wipe out star streaks. This should have an advantage of
potentially higher sensitivity and the ability to detect
space debris overlapping with star streaks, at the ex-
pense of computation time and a certain loss of reliabili-
ty due to amplification of point-like artifacts like cosmic
ray hits, hot pixels, and noise peaks. However, we have
not done a direct comparison of both methods yet and
cannot definitely conclude on their relative perfor-
mance.

Candidate space debris positions that are generated by
the Apex II morphology-based moving object detector
are then passed to the kd-tree based tracklet linking al-
gorithm mentioned in Section 2.2 that also identifies and
removes the remaining spurious detections. Final track-
lets are validated against IOD and sent back to the
KIAM data analysis center, as shown in Fig. 1.

3 TELESCOPE CONTROL SYSTEM

Here we describe the design ad implementation of the
second principal ISON sensor software component that
is responsible for acquiring the imaging data.

http://www.khronos.org/opencl

3.1 TCS Software Requirements

Each of the thousands of small and large robotic tele-
scopes in the world is controlled by its TCS software,
the only ultimate goal of which being to obtain scientific
data in whatever form it is possible for the given instru-
ment. Even if we limit ourselves to optical imaging,
there are numerous programs, open-source, proprietary,
and custom-made (the latter, most often, on large tele-
scopes), that are responsible for pointing and tracking,
image acquisition, as well as for planning observations
and controlling the various auxiliary observatory equip-
ment. Among them, at least two ‒ RTS2 (www.rts2.org)
and INDI (indilib.org) ‒ are open-source, support a wide
range of the commonly-used astronomical instrumenta-
tion, and are adopted by many teams for “classical” as-
tronomical applications involving deep-sky and slow-
moving Solar system objects.

However, SST poses a number of important require-
ments that are rarely or never needed in other types of
observations. Most of them are dictated by the relative
proximity of objects to observer and thus by their fast
apparent motion. The final accuracy of positional mea-
surements is affected by timing which, depending on the
orbit, should be perfect to several tens of milliseconds
(high orbits) or to fractions of a millisecond (low
orbits). To follow an object, the system should support
fast and variable-rate tracking, either according to the
ephemeris or with the feedback from real-time posi-
tional measurements. As it was noted in Section 2.1,
SST requires wide-FOV optical systems, and it is often
more cost-effective and flexible to use multiple parallel
optical sensors rather than a single larger-FOV one.
Also, to provide immediate follow-up of new discover-
ies for better IOD, many SST systems (including many
ISON sites) are equipped with several optical sensors
(e. g. survey, follow-up, and characterization subsys-
tems) that work together and should be coordinated; a
possible data flow for this case is given in Fig. 3. This
leads to the need to simultaneously control complex set-
ups with multiple sensors and to get feedback from the
image analysis pipeline in real time. Finally, although
not strictly required, a capability of dynamic reschedul-
ing of observations that also takes into account sky con-
ditions (incl. cloud coverage) may increase the overall
performance, especially for sensors located at lower-
quality astronomical sites.

Apart from the above conditions that are specific to
SST, a good astronomical data acquisition software is
expected to comply to a number of more generic re-
quirements. First, a potentially large number of hard-
ware components in the observatory that a single control
computer cannot always accommodate demands for
some type of distributed software architecture that
would allow to easily reconfigure the observatory setup
to split it across multiple control and data processing
workstations. Then, a web-based user interface (UI) is
required to easily access the TCS, monitor its state and
progress of observations, and allow for manual interven-
tion when necessary in a uniform manner, both locally

and remotely. A cleverly designed modular hardware
support architecture and the corresponding application
programming interface (API) are required for easily
porting the TCS to any new hardware when upgrading
the sensor, while an extensive datalogging capability not
only helps to track operation errors but is useful for
scheduling maintenance and replacement of certain
hardware parts.

3.2 First Generation of the ISON Data Acqui-
sition Software

As it was mentioned in Section 1, by the time of estab-
lishment of the ISON collaboration in mid-2000’s, there
existed a set of software applications and components
for general-purpose telescope control, image acquisi-
tion, and other tasks supporting robotic observations.
They were developed at Pulkovo Observatory by the au-
thor since the year 2000. Their design was driven
mainly by the need in modular approach and flexibility,
accurate hardware-assisted timing, and focus on the user
interface that should be convenient, look familiar to pro-
fessional astronomers, and provide easy access to most
of the common operations. The software was oriented
mainly towards the “supervised automated” mode of ob-
servations when the normal operation flow runs accord-
ing to the schedule, while the detailed hardware state
and progress of operation are easily available to the ob-
server who has also the capability to manually override
the automatic operation at any time.

The software [2] consists of the following large compo-
nents. CHAOS package is an integrated TCS application
that is responsible for basic scheduling, ephemeris sup-
port, and controlling the mount and other auxiliary
equipment like dome, focusers, limit switches, sensors,
etc. The list of supported mount controllers include
Meade LX-200 compatibles, SynScan handpad,
EQMOD-compatible controllers, Sidereal Technologies
servo controllers, ASCOM-compliant devices, and sev-
eral other less widely-used robotic mounts.
CameraControl is an integrated application for CCD
camera and filter wheel control and for image examina-
tion and storage. Most popular cameras and filter
wheels, including FLI, SBIG, Apogee, and others, are
supported. The Datalogger application provides system-
wide logging of the TCS operation. And, finally, the
hardware-disciplined timing subsystem provides a com-

Figure 3. On-site follow-up

http://www.indilib.org/
http://www.rts2.org/

mon API to non-realtime software events and to hard-
ware triggering capabilities. The whole package is quite
diverse regarding the programming languages and
frameworks used (Delphi, C, Ada’95, Fortran, Python,
etc.); inter-component data exchange is mostly based on
dynamic linking using a set of binary APIs and on cus-
tom networking protocols.

This set of software components has been adapted to
some most important ISON network needs and currently
drives the vast majority of ISON sensors. Its advantage
is its relatively long history (almost twice as long as the
ISON’s) and hence stability; it is also flexible enough to
suite at least the most basic of the SST requirements
listed above. However, all these packages are based on a
deprecated software model, which strongly limits its ex-
tensibility potential, and it still lacks enough flexibility
for some of the most advanced recent ISON observa-
tions strategies. The major problem is a weak integra-
tion with the image analysis facility (Apex II), which se-
verely complicates the implementation of such modes as
on-site follow-up (Fig. 3) and limits several other things
like the ephemeris engine capabilities and maintaining
accurate alignment and focus.

3.3 FORTE ‒ a New TCS Software Package

To overcome the limitations described in the previous
section, we have chosen to write a new integrated TCS
and data acquisition software from scratch. The new
package, called FORTE (Facility for Operating Robotic
Telescope Equipment), is based on Python and thus
shares the common platform with the image analysis in-
frastructure, which makes integration with Apex II very
straightforward and natural. Using such a high-level and
notoriously slow language as Python for controlling
hardware ‒ a task that inevitably contains time-critical
code ‒ is of course an arguable decision. However, as it
is the case for Apex II, the most time-critical FORTE
code that directly interfaces the hardware can be imple-
mented in C and easily linked to Python level; Python
itself, in turn, is used for scripting and controlling
lower-level blocks, which is a classical way of using
scripting languages. Writing most of the code in a
higher level not only saves coding time; this also allows
one to easily implement some very sophisticated algo-
rithms like automatic alignment and automatic capturing
of twilight flats, as well as to achieve a very high degree
of configurability. Although any decent TCS software
has a scripting capability of a certain kind, the latter is
usually added to the existing low-level hardware control
infrastructure, which gives one the level of control far
inferior to that achievable by FORTE, where the very
core of the TCS is implemented in the same language
and at the same level of generality.

FORTE distributed core is based on a unique remote
procedure call (RPC) mechanism that goes beyond such
well-known Python RPC implementations as Pyro
(pypi.python.org/pypi/Pyro4) and features transparent
remote access even to such objects as error stack traces

and inter-process synchronization primitives. This al-
lows one to spread hardware components across the net-
work in a fully arbitrary and configurable manner.
FORTE RPC uses two kinds of network transport for se-
rialization: the internal binary protocol for maximum ef-
ficiency and the human-readable extensible markup lan-
guage (XML) based protocol for maximum portability,
e. g. implementing device driver modules and client ap-
plications in languages other than Python.

FORTE is designed for maximum flexibility and scala-
bility. Fig. 4 illustrates the most generic observatory
setup and its logical components. One can see that
FORTE is able to control as simple setup as an amateur-
grade goto mount plus CCD camera, as well as the re-
cently constructed series of multi-dome and multi-tele-
scope ISON sites sponsored by the ROSCOSMOS
grant, by means of just changing the text-based configu-
ration file. New hardware support modules are easily
added according to simple APIs. Other software compo-
nents of FORTE are shown in Fig. 5. Here we briefly
describe them and highlight some specific FORTE fea-
tures.

Forte datalogger is based on the built-in Python logging
facility; thus it also automatically handles log messages
from all external modules that use the same facility. Var-
ious backends are supported, including disk files with
optional automatic rotation, Unix syslog daemon, Win-
dows event log, and sockets. The actual logging config-
uration, including specifying destinations for different
types of events and message formats, is fully defined by

Figure 4. Observatory setup and its components

Figure 5. FORTE software components

http://www.python.org/

the user. The same facility is used to collect the various
hardware usage statistics, including motor revolutions,
shutter cycles, voltages, and so forth.

Ephemeris engine provides the instantaneous object po-
sitions and velocities for pointing and tracking. Apart
from its own ephemeris data sources, the engine has ac-
cess to those supported by Apex II, including stellar cat-
alogs, Solar system ephemerides, and databases of orbits
of artificial Earth satellites and space debris. Network
interface is the common gateway for externally control-
ling and monitoring FORTE operation via the XML-
based RPC protocol. This is facilitated by several client
applications, including web-based graphical UI (GUI)
and console-mode clients, and by Python scripts for au-
tomation of certain routine observation tasks.

All hardware devices, as well as the top-level Observa-
tory device (see Fig. 4), are always in one of the prede-
fined hardware states. The offline state assumes that all
devices are in safe state (e. g. telescope parked, dome
closed, CCD thermoelectric cooler disabled, etc.) and
ready for power-off; while in offline, the link between
FORTE and hardware is not established. Devices are in
the suspend state during long delays in the normal oper-
ation (e. g. due to unfavorable weather conditions or
daytime); hardware link is established, and FORTE
monitors the various hardware characteristics but does
not take any active control actions. In the standby state,
FORTE makes sure that devices are ready for immedi-
ately starting the normal operation but prevents any ac-
tual movement or other similar activities. Finally, the
online state is the only one for normal operation, when
FORTE accepts requests for doing observations.

An important FORTE feature is the image pipeline that
is essentially a user-defined set of operations on the im-
age data and metadata. Pipelines consist of elementary
operations like image calibration, display, or storage,
run sequentially, in parallel, or in any combinations.
They are initiated asynchronously immediately after the
image readout; metadata hold a set of TCS state parame-
ters before, during, and after integration, as well as
some accompanying information like weather condi-
tions. A certain default pipeline is associated with each
optical channel of the observatory, but it can be also
overridden by client applications individually for each
exposure. The most basic image pipeline consists of just
storing the image on disk as a flexible image transport
system (FITS) file; this is what most of the simple TCS
packages do. A more complex example may involve on-
the-fly image analysis of a set of images to detect track-
lets and initiate follow-up observations on another sen-
sor in case of uncorrelated detection.

Another noteworthy FORTE feature is its event system.
Various events are generated by TCS components on
certain state changes. The user can define actions for
some relevant events by means of Python scripting.
Some possible examples of “event ‒ action” pairs are:
the overall cloud coverage is above 90% → switch to
standby; relative humidity is above 95% → switch to

suspend; ambient temperature has changed by 10º →
perform auto-focusing. FORTE event system makes a
large contribution to its overall flexibility and, in the
right hands, may become a powerful tool for building a
very intelligent observatory.

For a long time, ISON used (and is still using) the old
Russian space surveillance system format for raw mea-
surement interchange. This format is very restrictive and
is capable of storing only a very limited set of parame-
ters, and with limited numerical precision. To avoid data
loss during the interchange and to handle a more exten-
sive set of parameters, including those related to object
characterization, ISON is currently moving to a new
XML-based format. Apart from being able to store data
with precision appropriate to the actual accuracy of
measurements, this format may contain extended param-
eters related to color photometry, shape of the objects’
images, and the various primary accuracy estimates.
This may also help to evaluate the reliability and quality
of individual measurements. The new format that is
fully supported by FORTE is also fully extendable. Be-
low is an example of a measurement represented in this
format:

<meas>

 <sensor>12345</sensor> <id>12001002</id>

 <filename>/.../25.20120101T001122345.fit</filename>

 <utc>2012-01-01T00:11:22.345678</utc>

 <ra_j2000>1.2345678</ra_j2000>

 <dec_j2000>-2.345678</dec_j2000>

 <ra_j2000_error>0.123</ra_j2000_error>

 <dec_j2000_error>0.234</dec_j2000_error>

 <mag>15.678</mag> <mag_error>0.05</mag_error>
 <snr>5.678</snr> <x>123.456</x> <y>789.012</y>

 <x_error>0.0234</x_error> <y_error>0.0345</y_error>

 <vel_ha>-0.123</vel_ha> <vel_dec>1.234</vel_dec>

 <length>39.7</length> <width>2.5</width>

<rot>43</rot>

 ...

</meas>

<meas>

 ...

</meas>

4 CONCLUSIONS

We have described here the basic structure, design prin-
ciples, and implementation details of the standard tele-
scope control, data acquisition, and image analysis soft-
ware currently driving almost all ISON sites. Among
other factors, the resulting performance of ISON sensors
was for a long time limited by non-realtime initial data
processing and by weak integration of the image analy-
sis pipeline with TCS. During the years 2010‒2013, the
Apex II image analysis platform acquired a parallel sub-
system. Along with the use of mathematical morphology
methods for fast-moving object detection, as well as the

kd-tree based tracklet linking algorithm, this resulted in
much higher computational performance of initial data
reduction. A new observatory control system, FORTE, is
tightly integrated with the data reduction pipeline,
which strongly enhances its capabilities and results in a
significant improvement of space debris discovery rate
and of the overall ISON performance in general.

5 REFERENCES

1. Molotov, I.; Agapov, V.; Titenko, V.; Khutorov-
sky, Z.; Burtsev, Yu.; Guseva, I.; Rumyantsev, V.;
Ibrahimov, M.; Kornienko, G.; Erofeeva, A.; Biryu-
kov, V.; Vlasjuk, V.; Kiladze, R.; Zalles, R.; Suk-
hov, P.; Inasaridze, R.; Abdullaeva, G.; Rychal-
sky, V.; Kouprianov, V.; Rusakov, O.; Litvinen-
ko, E.; Filippov, E. (2008). International scientific
optical network for space debris research. Adv.
Space Res. 41(7), 1022–1028.

2. Devyatkin, A. V.; Gorshanov, D. L.; Koupri-
anov, V. V.; Vereshchagina, I. A.; Bekhteva, A. S.;
Ibragimov, F. M. (2009). Astrometric and photo-
metric observations of solar system bodies with
Pulkovo Observatory’s automatic mirror astrograph
ZA–320M. Sol. Sys. Res. 43(3), 229–239.

3. Kouprianov, V. (2008). Distinguishing features of
CCD astrometry of faint GEO objects. Adv. Space
Res. 41(7), 1029–1038.

4. Devyatkin, A. V.; Gorshanov, D. L.; Koupri-
anov, V. V.; Verestchagina, I. A. (2010). Apex I and
Apex II software packages for the reduction of as-
tronomical CCD observations. Sol. Sys. Res. 44(1),
68–80.

5. Kubica, J.; Denneau, L.; Grav, T.; Heasley, J.;
Jedicke, R.; Masiero, J.; Milani, A.; Moore, A.;
Tholen, D.; Wainscoat, R. J. (2007). Efficient intra-
and inter-night linking of asteroid detections using
kd-trees. Icarus 189(1), 151–168.

6. Fluke, C. J.; Barnes, D. J.; Barsdell, B. R.; Has-
san, A. H. (2011). Astrophysical supercomputing
with GPUs: critical decisions for early adopters.
Publ. Astron. Soc. Australia 28(1), 15–27.

7. Yanagisawa, T.; Nakajiama, A.; Kurosaki, H.
(2005). Detection of small GEO debris using auto-
matic detection algorithm. In Proc. 4th European
Conference on Space Debris, Darmstadt, Germany,
18–20 April 2005.

8. Lévesque, M. P. (2011) Detection of artificial satel-
lites in images acquired in track rate mode. In Proc.
AMOS-Tech. Conf., Wailea, Maui, Hawaii, 13–16
September 2011, E66.

